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Abstract: It is useful to apply interval estimates to improve the evaluation of reliability results of calculations,
and therefore the evaluation of the reliability of mechanical structures. In this paper, interval estimates are used
to establish the range of variation of a function and its derivatives As is known, the problem of the simultaneous
approximation of a function and its derivatives cannot be solved using classical interpolation polynomials. In this
paper, we consider the approximation of a function and its first derivative by using polynomial and trigonometric
splines with the third order of approximation. In this case, the approximation of the first derivative turns out to be
discontinuous at the nodes of the grid. The values of the constants in the estimates of the errors of approximation
with the trigonometric and polynomial splines of the third order are given. It is shown that these constants cannot
be reduced. To solve practical problems, it is often important not to calculate the values of the function and its
derivatives in a number of nodes on the grid interval, but to estimate the range of change of the function on this
interval. For the interval estimation of the approximation of function or its first derivative, we use the technique
of working with real intervals from interval analysis. The algorithms for constructing the variation domain of the
approximation of the function and the first derivative of this function are described. The results of the numerical
experiments are given.

Key–Words: trigonometric splines, polynomial splines, interval estimation

1 Introduction
In this paper, we consider local trigonometric and
polynomial splines suitable for solving many prob-
lems of applied mechanics. For example, the con-
sidered splines can be used to automatically generate
the tool path associated with a certain geometry of
the pocket profile [1] for light alloy aerospace parts.
These splines can be successfully used in calculating
the orbits of the planets, cloud of particles and trajec-
tories of asteroids [2]. Another area of application of
the splines is the flight control of unmanned aircrafts
[3]. Our splines can be used in the Global Position-
ing System (GPS) that is a satellite navigation system
which allows the users to determine 3D positioning
and the time with high precision [4]. To improve the
evaluation of reliability, a non-probabilistic reliability
method was used in [5] to analyse the resonance of
fluid-filled pipeline systems. In this paper the uncer-
tain parameters of structures were described by both
ellipsoidal modes and interval parameters.

It is useful to determine the lower and upper
bounds of the values of functions, eigenvalues of op-
erators, solutions of systems of linear and nonlinear

equations without calculating a detailed numerical so-
lution of the corresponding problems. The solution to
these problems has been considered in many papers,
which has recently been published.

In paper [6] a new approach for solving non lin-
ear systems of equations was proposed. This approach
is based on Interval-Newton and Interval-Krawczyk
operators and B-splines. The proposed algorithm
is making great benefits of the geometric properties
of B-spline functions to avoid unnecessary computa-
tions. For eigenvalue problems of self-adjoint differ-
ential operators, a universal framework is proposed to
give explicit lower and upper bounds for the eigenval-
ues (see [7]).

To improve the calculation accuracy and reduce
the computational cost, the interval analysis technique
and radial point interpolation method are adopted
in [8] to obtain the approximate frequency response
characteristics for each focal element, and the corre-
sponding formulations of structural-acoustic system
for interval response analysis are deduced.

In 1964 Schoenberg introduced trigonometric
spline functions [9].
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This paper continues the series of papers on ap-
proximation by local polynomial and non-polynomial
splines and interval estimation (see [12, 13, 14]).

For constructing the interval extension of the ap-
proximation of the function or its first derivative, we
use techniques from interval analysis.

This paper focuses on polynomial and trigono-
metric splines of the third order approximation. It
should be noted that Yu.K.Demyanovich devotes a
lot of attention to the study of quadratic polynomial
splines of the Lagrangian type (see [11]).

In some cases, the use of the trigonometric ap-
proximations is preferable to the polynomial approxi-
mations. Here we compare these two types of approx-
imation. To approximate functions on a finite grid of
nodes, we will use the left and right splines.

2 Approximation with the Left
Splines with the Third Order of
Approximation

We will apply left splines near the right end of the
finite interval [a, b]. Right splines will be applied near
the left end of the finite interval [a, b]. Suppose a, b
be real numbers. Let the set of nodes xj be such that
a < . . . < xj−1 < xj < xj+1 < . . . < b.

We construct an approximation F (x) of function
f(x), f ∈ C(3)[a, b] with local splines, in which the
support consists of three adjacent intervals. When ap-
proximating a function on a finite interval near the left
and right boundaries of the interval [a, b] we will use
the approximation with the left or the right continuous
splines. The set of interpolation local left and right
splines are called boundary minimal splines. Near the
right end of the finite interval [a, b] we use the left
splines.

First, suppose that basis spline wj(x) is such that
supp wj = [xj−1, xj+2], and wj(x) = 0 if x /∈
[xj−1, xj+2].

The approximation with the left polynomial or
non-polynomial splines of the third approximation or-
der can be written as x ∈ [xj , xj+1] in the form:

FL(x) = f(xj−1)wj−1(x) + f(xj)wj(x)+

f(xj+1)wj+1(x). (1)

Suppose that the functions φ0, φ1, φ2 form the Cheby-
shev system and the determinant

det

 φ0(xj−1) φ0(xj) φ0(xj+1)
φ1(xj−1) φ1(xj) φ1(xj+1)
φ2(xj−1) φ2(xj) φ2(xj+1)


is non-zero.

We obtain the basic functions wj−1(x), wj(x),
wj+1(x), x ∈ [xj , xj+1], solving the following sys-
tem:

φ0(xj−1)wj−1(x) + φ0(Xj)wj(x)+

φ0(xj+1)wj+1(x) = φ0(x),

φ1(xj−1)wj−1(x) + φ1(xj)wj(x)+

φ1(xj+1)wj+1(x) = φ1(x), (2)

φ2(xj−1)wj−1(x) + φ2(xj)wj(x)+

φ2(xj+1)wj+1(x)= φ2(x).

By the assumption that the spline support consists of
three adjacent intervals supp wj = [xj−1, xj+2]. The
formulas defining the basis spline wj can be found by
solving two additional systems of equations. When
x ∈ [xj−1, xj ] we obtain the basis spline wj by solv-
ing the system of equations:

φ0(xj−2)wj−2(x) + φ0(xj−1)wj−1(x)+

φ0(xj)wj(x) = φ0(x),

φ1(xj−2)wj−2(x) + φ1(xj−1)wj−1(x)+

φ1(xj)wj(x) = φ1(x),

φ2(xj−2)wj−2(x) + φ2(xj−1)wj−1(x)+

φ2(xj)wj(x) = φ2(x),

When x ∈ [xj+1, xj+2] we obtain the basis spline wj

by solving the system of equations:

φ0(xj)wj(x) + φ0(xj+1)wj+1(x)+

φ0(xj+2)wj+2(x) = φ0(x),

φ1(xj)wj(x) + φ1(Xj+1)wj+1(x)+

φ1(xj+2)wj+2(x) = φ1(x),

φ2(xj)wj(x) + φ2(xj+1)wj+1(x)+

φ2(xj+2)wj+2(x) = φ2(x).

It can easily be shown that
wj(xj) = 1, wj(xj+2) = 0, wj+1(xj) = 0,
wj−1(xj) = 0, wj(xj+1) = wj(xj−1) = 0,
wj+1(xj+1) = 1, wj+1(xj−1) = 0,
wj−1(xj−1) = 1, wj−1(xj+1) = 0.
The approximation FL(x) is only a continuous

one. But we can get the first derivative of the basis
functions and construct the approximation of the first
derivative of the function (everywhere except nodes)
in the form:

(FL)′(x) = f(xj−1)w
′
j−1(x) + f(xj)w

′
j(x)+

f(xj+1)w
′
j+1(x), x ∈ [xj , xj+1]. (3)
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2.1 Left Trigonometric Splines
First, we consider the approximation of a function
f(x) with the left trigonometric splines (see [13]).
In this case φ0(x) = 1, φ1(x) = sin(x), φ2(x) =
cos(x). We obtain the basis functions wj−1(x),
wj(x), wj+1(x), x ∈ [xj , xj+1], solving system (2).
Now it has the form:

wj−1(x) + wj(x) + wj+1(x) = 1,

sin(Xj−1)wj−1(x) + sin(Xj)wj(x)+

sin(Xj+1)wj+1(x) = sin(x), (4)

cos(Xj−1)wj−1(x) + cos(Xj)wj(x)+

cos(Xj+1)wj+1(x)=cos(x).

The solution of this system can be written as fol-
lows:

wj(x) = (sin(xj+1 − x)− sin(Xj+1 − xj−1)+

sin(x− xj−1))/Zj ,

wj+1(x) = (sin(x− xj) + sin(xj − xj−1)−

sin(x− xj−1))/Zj ,

wj−1(x) = (sin(Xj − x) + sin(xj+1 − xj)−

sin(xj+1 − x))/Zj ,

where Zj = sin(xj − xj−1) − sin(xj+1 − xj−1) −
sin(xj − xj+1).

It is not difficult to see that the solution of the
system (4) can be written as follows:

wj(x) =
sin((x− xj−1)/2) sin((xj+1 − x)/2))

sin((xj − xj−1)/2) sin((xj+1 − xj)/2)
,

wj+1(x)=
sin((x− xj−1)/2) sin((x− xj)/2)

sin((xj+1−xj−1)/2) sin((xj+1−xj)/2)
,

wj−1(x)=
sin((x− xj)/2) sin((x− xj+1)/2)

sin((xj−1−xj)/2) sin((xj−1−xj+1)/2)
.

Under the assumption h = xj+1−xj , xj−xj−1 =
Ah, A > 0, x = xj + th, t ∈ [0, 1], the basis splines
wj−1(x), wj(x), wj+1(x), x ∈ [xj , xj+1], can now
also be written as follows:

wj(xj + th) =
− sin(th/2+Ah/2) sin(th/2−h/2)

sin(Ah/2)/ sin(h/2)
,

wj+1(xj + th) =
sin(th/2 +Ah/2) sin(th/2)

sin(Ah/2 + h/2)/ sin(h/2)
,

wj−1(xj + th) =
sin(th/2) sin(−h/2 + th/2)

sin(Ah/2)/ sin(Ah/2 + h/2)
.

This form of the basis splines will be used to construct
the approximation.

It is not difficult to see that the solution of the
system (4) can also be written as follows:

wj(x) =
cos(x− xj−1

2 − xj+1

2 )−cos(
xj−1

2 − xj+1

2 )

2 sin(
xj

2 − xj−1

2 ) sin(
xj+1

2 − xj

2 )
,

wj+1(x)=
cos(

xj

2 − xj−1

2 )−cos(
xj

2 +
xj−1

2 −x)

2 sin(
xj+1

2 − xj−1

2 ) sin(
xj+1

2 − xj

2 )
, (5)

wj−1(x) =
cos(

xj

2 − xj+1

2 )− (cos(
xj

2 +
xj+1

2 − x)

2 sin(
xj−1

2 − xj

2 ) sin(
xj−1

2 − xj+1

2 )
.

The last form of the basis splines will be used to
construct interval estimation of the approximation.

The next form of the left trigonometric basis
splines will be used to construct interval estimation
of the first derivative of the approximation:

w′
j(x) = −

sin(x− xj−1

2 − xj+1

2 )

2 sin(
xj

2 − xj−1

2 ) sin(
xj+1

2 − xj

2 )
,

w′
j+1(x) =

sin(x− xj

2 − xj−1

2 )

2 sin(
xj+1

2 − xj−1

2 ) sin(
xj+1

2 − xj

2 )
, (6)

w′
j−1(x) =

sin(x− xj

2 − xj+1

2 )

2 sin(
xj−1

2 − xj

2 ) sin(
xj−1

2 − xj+1

2 )
.

The plots of the left trigonometric basis spline wj

and its first derivative are given in Fig. 1. The plot
of the approximation of the function sin(3x) cos(2x)
with the left trigonometric basis splines and the ap-
proximation of the first derivative of this function are
given in Fig. 2. The plots of the error of approxima-
tion of the function f(x) = sin(3x) cos(2x) with the
left trigonometric basis splines, and the error of the
approximation of the first derivative of this function,
are given in Fig. 3.
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Figure 1: The plots of the left trigonometric basis
spline (left) and its first derivative (right).

In the next section, to compare the quality of
the approximation, we present the basic information
about the left polynomial splines with the third order
of approximation.
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Figure 2: The plots of the approximation of the
function f(x) = sin(3x) cos(2x) (left) and the ap-
proximation of its first derivative (right) with the left
trigonometric splines.
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Figure 3: The plots of the error of approximation of
the function f(x) = sin(3x) cos(2x) (left) and the er-
ror of approximation of its first derivative (right) with
the left trigonometric splines.

2.2 Comparison with the left polynomial
splines

In case of polynomial splines we use φ0(x) = 1,
φ1(x) = x, φ2(x) = x2 (see [13]). We use the fol-
lowing approximation:

GL(x) = f(xj−1)ωj−1(x) + f(xj)ωj(x)+

f(xj+1)ωj+1(x), x ∈ [xj , xj+1].

We obtain basic functions ωj−1(x), ωj(x),
ωj+1(x), x ∈ [xj , xj+1], solving the following sys-
tem:

ωj−1(x) + ωj(x) + ωj+1(x) = 1.

xj−1ωj−1(x) + xjωj(x) + xj+1ωj+1(x) = x,

x2j−1ωj−1(x) + x2jωj(x) + x2j+1ωj+1(x) = x2.

The solution of this system is the following:

ωj(x) =
(x− xj−1)(x− xj+1)

(xj − xj−1)(xj − xj+1)
,

ωj+1(x) =
(x− xj)(x− xj−1)

(xj+1 − xj)(xj+1 − xj−1)
,

ωj−1(x) =
(x− xj)(x− xj+1)

(xj−1 − xj+1)(xj−1 − xj)
.

Using the notation x = xj + th, xj+1 = xj + h,
xj−1 = xj − h we get

ωj(xj + th) = −(t− 1)(t+ 1),

ωj+1(xj + th) = t(t+ 1)/2, (7)

ωj−1(xj + th) = t(t− 1)/2.

It can easily be shown that there are relations be-
tween trigonometrical and polynomial splines:

wj(xj + th) = ωj(xj + th) +O(h2),
wj+1(xj + th) = ωj+1(xj + th) +O(h2),
wj−1(xj + th) = ωj−1(xj + th) +O(h2).
The plots of the left polynomial basis spline ωj

and its first derivative are given in Fig. 4. The plot
of the approximation of the function sin(3x) cos(2x)
with the left polynomial basis splines and the approxi-
mation of the first derivative of this function are given
in Fig. 5. The plots of the error of approximation
of the function f(x) = sin(3x) cos(2x) with the left
polynomial basis splines and the error of the approxi-
mation of the first derivative of this function are given
in Fig. 6.
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Figure 4: The plots of the left polynomial basis func-
tion ωj (left) and its first derivative of the basis func-
tion (right).
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Figure 5: The plots of approximation of the function
f(x) = sin(3x) cos(2x) (left) and its its first deriva-
tive (right) with the left polynomial splines.
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Figure 6: The plots of the error of approximation of
the function f(x) = sin(3x) cos(2x) (left) and its first
derivative (right) with the left polynomial splines.
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3 The Approximation with the Right
Splines

Now we consider the approximation of a function
f(x), x ∈ [xj , xj+1], with the right trigonometric
splines. The right trigonometric splines we apply near
the left border of the finite interval [a, b]. Suppose that
the functions φ0, φ1, φ2 form the Chebyshev system
and the determinant

det

 φ0(xj) φ0(xj+1) φ0(xj+2)
φ1(xj) φ1(xj+1) φ1(xj+2)
φ2(xj) φ2(xj+1) φ2(xj+2)


is non-zero.

We can construct the approximation of function
f(x), in the form:

FR(x) = f(xj)Wj(x) + f(xj+1)Wj+1(x)+

f(xj+2)Wj+2(x). (8)

We construct the approximation of the first
derivative of the function f(x) in the form:

(FR)′(x) = f(xj)W
′
j(x) + f(xj+1)W

′
j+1(x)+

f(xj+2)W
′
j+2(x). (9)

We obtain basic functions wj(x), wj+1(x), wj+2(x)
from the following system:

sin(xj)Wj(x) + sin(xj+1)Wj+1(x)+

sin(xj+2)Wj+2(x) = sin(x),

cos(xj)Wj(x) + cos(xj+1)Wj+1(x)+

cos(xj+2)Wj+2(x) = cos(x), (10)

Wj(x) +Wj+1(x) +Wj+2(x) = 1.

The solution of this system can be written as fol-
lows:

Wj(x)=(− sin(xj+1 − xj+2)− sin(xj+2 − x)+

sin(xj+1 − x))/Sj ,

Wj+1(x)=(sin(xj − xj+2)− sin(xj − x)+

sin(xj+2 − x))/Sj

Wj+2(x)=(sin(xj − x) + sin(xj+1 − xj)−

sin(xj+1 − x))/Sj ,

where
Sj = (sin(xj − xj+2) + sin(xj+1 − xj) −

sin(xj+1 − xj+2)).

It is not difficult to see that the solution of system
(10) can be written as follows:

Wj(x) =
sin(x2 − xj+2

2 ) sin(x2 − xj+1

2 )

sin(
xj

2 − xj+2

2 ) sin(
xj

2 − xj+1

2 )
,

Wj+1(x) =
sin(x2 − xj+2

2) sin(x2 − xj

2 )

sin(
xj+1

2 − xj+2

2 ) sin(xj+1
2 − xj

2 )
,

Wj+2(x) =
sin(x2 − xj

2 ) sin(
x
2 − xj+1

2 )

sin(
xj+2

2 − xj

2 ) sin(
xj+2

2 − xj+1

2 )
.

It is not difficult to see that the solution of the system
can also be written as follows:

Wj(x)=
cos(

xj+1

2 − xj+2

2 )−cos(x− xj+2

2 − xj+1

2 )

2 sin(
xj

2 − xj+2

2 ) sin(
xj

2 − xj+1

2 )
,

Wj+1(x) =
cos(x− xj+2

2 − xj

2 )− cos(
xj

2 − xj+2

2 )

2 sin(
xj+1

2 − xj+2

2 ) sin(
xj

2 − xj+1

2 )
,

(11)

Wj+2(x) =
cos(

xj

2 − xj+1

2 )− cos(x− xj

2 − xj+1

2 )

2 sin(
xj

2 − xj+2

2 ) sin(
xj+1

2 − xj+2

2 )
.

The last form of the basis splines will be used to con-
struct interval estimation of the approximation.

The next form of the basis splines will be used to
construct interval estimation of the first derivative of
the approximation:

W ′
j(x) =

sin(x− xj+2

2 − xj+1

2 )

2 sin(
xj

2 − xj+2

2 ) sin(
xj

2 − xj+1

2 )
,

W ′
j+1(x) = −

sin(x− xj+2

2 − xj

2 )

2 sin(
xj+1

2 − xj+2

2 ) sin(
xj

2 − xj+1

2 )
,

(12)

W ′
j+2(x) =

sin(x− xj

2 − xj+1

2 )

2 sin(
xj

2 − xj+2

2 ) sin(
xj+1

2 − xj+2

2 )
.

The plots of the right trigonometric basis spline Wj

and its first derivative are given in Fig. 7. The plot
of the approximation of the function sin(3x) cos(2x)
with the right trigonometric basis splines and the ap-
proximation of the first derivative of this function are
given in Fig. 8. The plots of the error of approxima-
tion of the function f(x) = sin(3x) cos(2x) with the
right trigonometric basis splines, and the error of the
approximation of the first derivative of this function,
are given in Fig. 9.

Similar to what was done earlier, we find for-
mulas for the right polynomial basis splines vj(x),
vj+1(x), vj+2(x) and their first derivatives.

vj(x) =
(x− xj+1)(x− xj)

(xj − xj+2)(xj+1 − xj+2)
,
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Figure 7: The plots of the right basis trigonometric
spline (left) and its first derivative (right).

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–1 –0.5 0.5 1

–2

–1

1

2

3

–1 –0.5 0.5 1

Figure 8: The plots of the approximation of the func-
tion f(x) = sin(3x) cos(2x) (left) and the approx-
imation of its first derivative (right) with the right
trigonometric splines.

vj+1(x) = − (x− xj+2)(x− xj)

(xj − xj+1)(xj+1 − xj+2)
,

vj+2(x) =
(x− xj+2)(x− xj+1)

(xj − xj+2)(xj − xj+1)
. (13)

We construct the approximation of the function f(x)
in the form:

GR(x) = f(xj)vj(x) + f(xj+1)vj+1(x)+

f(xj+2)vj+2(x), x ∈ [xj , xj+1].

When x = xj + th, we obtain the formulas from
(13) for x ∈ [xj , xj+1]:

vj(xj + th) = 1− (3/2)t+ t2/2,
vj+1(xj + th) = 2t− t2,
vj+2(xj + th) = t2/2− t/2.

4 The Theorem of the Approxima-
tion

In this section, we formulate a theorem of the ap-
proximation with the polynomial and the trigonomet-
ric splines. Let ∥f (3)∥[α,β] = max

x∈[α,β]
|f (3)(x)|[α,β].

Theorem 1 Let function f(x) be such that f ∈
C3[α, β], [α, β] ⊂ [a, b]. Suppose the set of nodes
is: xj+2−xj+1 = xj+1−xj = xj −xj−1 = h. Then
for x ∈ [xj , xj+1] we have

∥f −GL∥[xj ,xj+1] ≤ KL
1 h

3∥f (3)∥[xj−1,xj+1], (14)
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Figure 9: The plots of the error of approximation
of the function f(x) = sin(3x) cos(2x) and its first
derivative with the right trigonometric splines.

∥f −GR∥[xj ,xj+1] ≤ KR
1 h

3∥f (3)∥[xj ,xj+2], (15)

∥f − FL∥[xj ,xj+1] ≤ KL
2 h

3∥f (3) + f ′∥[xj−1,xj+1],
(16)

∥f−FR∥[xj ,xj+1] ≤ KR
2 h

3∥f (3)+f ′∥[xj ,xj+2], (17)

where KL
1 = KR

1 = 0.385/3! ≈ 0.0642, KL
2 =

0.0713, KR
2 = 0.0795.

Proof: Using the properties of the basis splines
it can easily be shown that for the left splines we
receive FL(xj) = f(xj), FL(xj−1) = f(xj−1),
FL(xj+1) = f(xj+1). So in the polynomial case
(FL)′(x) = f(xj−1)ω

′
j−1(x) + f(xj)ω

′
j(x) +

f(xj+1)ω
′
j+1(x) is an interpolation polynomial. That

is why we can apply the classic theory,

KL
1 = max

x∈[xj ,xj+1]
|(x− xj)(x− xj+1)(x− xj−1)| =

= h3 max
t∈[0,1]

|t(t− 1)(t+ 1)| ≈ 0.385h3,

and receive formula (14). Formula (15) can be ob-
tained in the same way:

KR
1 = max

x∈[xj ,xj+1]
|(x− xj)(x− xj+1)(x− xj+2)| =

= h3 max
t∈[0,1]

|t(t− 1)(t− 2)| ≈ 0.385h3.

The algorithm for obtaining the error estimation
of non-polynomial splines is described in paper [14].
In short, for our trigonometric splines it is as follows.
First let us represent the function f(x) in the form
convenient for obtaining the error estimation. We con-
struct a homogeneous linear equation Lf = 0, which
has the fundamental system of solutions φ0 = 1,
φ1 = sin(x), φ2 = cos(x). Let us construct Lf for
x ∈ [xj , xj+1] ∈ [a, b]:

Lf = det


1 sin(x) cos(x) f(x)
0 cos(x) − sin(x) f ′(x)
0 − sin(x) − cos(x) f ′′(x)
0 − cos(x) sin(x) f ′′′(x)


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We can easily obtain: Lf = −f ′(t) − f (3)(t). Here
the Wronskian

W (x) = det

 1 sin(x) cos(x)
0 cos(x) − sin(x)
0 − sin(x) − cos(x)


does not equal zero.

Now we can construct a general solution of the
nonhomogeneous equation Lf = Q by the method of
variation of the constants.

Suppose f(x) = C1(x) sin(x) + C2(x) cos(x) +
C3(x), where Ci are some constants. Solving the sys-
tem

3∑
i=1

C ′
i(x)φi(x) = 0,

3∑
i=1

C ′
i(x)φ

′
i(x) = 0,

3∑
i=1

C ′
i(x)φ

′′
i (x) = Q(x).

We get:

Ci(x) =

∫ x

xj

W3i(t)Q(t)dt

W (t)
+ ci,

where ci are arbitrary constants, W3i(t) are algebraic
complements (signed minor) of the element of i-th
column of 3-th row of determinant W (t). Thus

f(x) =
3∑

i=1

φi(x)

∫ x

xj

W3i(t)Q(t)dt

W (t)
+

3∑
i=1

ciφi(x).

But Q = Lf , thus we obtain:

f(x) = 2

∫ x

xj

(f (3)(t) + f ′(t)) sin2
(t− x)

2
dt+

c1 sin(x) + c2 cos(x) + c3. (18)

Now using expressions for FL and FR (see (1),
(5), (8), (11)) and (18) we can obtain the errors of
approximation of function f with the constants KL

2 =
0.0713, KR

2 = 0.0795
Thus, the formulae (16) and (17) are valid.

Remark 2 There are examples that show that the
constants K1 and K2 can’t be reduced. They are the
following: f(x) = f1(x) = x3/6 for the polynomial
splines and f(x) = f2(x) = sin(x) − cos(x) + x
for the trigonometrical splines. Let us consider the
left splines. For the right splines the result will be
the same. Let us take h = 1, xj = 0, xj+1 = 1,

xj−1 = −1 and construct the trigonometrical approx-
imation FL(x) and polynomial approximation GL(x)
using (1).

We have for these functions:

f1
(3)(x) = 1, f2

(3)(x) + f2
′(x) = 1,

so at point x = 0.5708 we receive
FL(x)− f2(x) = 0.0713,

and at point x = 0.57735 we receive
GL(x)− f1(x) = 0.0642.

Remark 3 Using the Taylor expansions in a vicinity
of point xj and the first derivatives of the formulae
(7), (13), we obtain the following statements: For the
approximation of the first derivative of the function
the following relations are valid (everywhere except
nodes)

∥f ′ − (GL)′∥[xj ,xj+1] ≤ K3h
2∥f ′′′∥[xj−1,xj+1],

∥f ′ − (GR)′∥[xj ,xj+1] ≤ K4h
2∥f ′′′∥[xj ,xj+2],

K3 = 0.5, K4 = 1. Using (9), (12) and (3), (6), we
obtain the following statements:

∥f ′ − (FL)′∥[xj ,xj+1] ≤ K5h
2∥f (3)∥[xj−1,xj+1],

∥f ′ − (FR)′∥[xj ,xj+1] ≤ K6h
2∥f (3)∥[xj ,xj+2],

where K5 = 0.472, K6 = 1.1.

Let us calculate the actual errors of the approx-
imation with the left polynomial and trigonometric
splines using the formulae:

RL
F = max

x∈[−1,1]
|FL(x)− f(x)|,

RL
G = max

x∈[−1,1]
|GL(x)− f(x)|.

The maximums of the errors of the approx-
imation in absolute values (Act.Err.Func.) with
the left polynomial splines (Pol.Left) and the left
trigonometric splines (Trig.left) of the function
f(x) = sin(3x) cos(2x) and its first derivative
(Act.Err.Deriv.) are shown in Table 1. For compar-
ison, Table 1 shows the theoretical approximation er-
rors of the function (Theor.Err.Func.) obtained using
the theorem. Here h = 0.1, [a, b] = [−1, 1].

The results of the application of the left trigono-
metrical splines for the approximation of functions are
given in Table 2. The results of the application of
the left polynomial splines for the approximation of
the same functions are given in Table 3. In the sec-
ond column of Table 2 and Table 3 the maximums
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Table 1: The maximums of the error of the approx-
imation in absolute values with the left polynomial
and trigonometric splines of the function f(x) =
sin(3x) cos(2x)

f(x) = sin(3x) cos(2x) Pol.Left Trig.left
Act.Err.Func. 0.00397 0.00378
Act.Err. Deriv. 0.197 0.189
Theor.Err.Func. 0.00427 0.00449

of the actual errors of approximations in absolute val-
ues are done. In the third column of Table 2 and Ta-
ble 3 the maximums of the theoretical errors of ap-
proximations in absolute values are done. Calcula-
tions for both tables were made in Maple with Dig-
its=15, [a, b] = [−1, 1], h = 0.1.

Table 2: The errors of approximation with the left
trigonometrical splines

f(x) Actual err. Theor.err.
sin(3x) 0.153e-2 0.171e-2
1/(1 + 25x2) 0.294e-1 0.413e-1
x3 0.573e-3 0.642e-3
sin(x)− cos(x) + x 0.642e-4 0.713e-4

Table 3: The errors of approximation with the left
polynomial splines

f(x) Actual.err. Theor.err.
sin(3x) 0.1721e-2 0.1732e-2
1/(1 + 25x2) 0.2957e-1 0.3754e-1
x3 0.3849e-3 0.3850e-3
sin(x)− cos(x) + x 0.9061e-4 0.9074e-4

The results of the application of the right trigono-
metrical splines for the approximation of functions are
given in Table 4. The results of the application of
the right polynomial splines for the approximation of
the same functions are given in Table 5. In the sec-
ond column of Table 4 and Table 5 the maximums
of the actual errors of approximations in absolute val-
ues are done. In the third column of Table 4 and Ta-
ble 5 the maximums of the theoretical errors of ap-
proximations in absolute values are done. Calcula-
tions for both tables were made in Maple with Dig-
its=15, [a, b] = [−1, 1], h = 0.1.

The results of the application of the right and left
trigonometric splines for the approximation of the first
derivative of functions are given in Table 6. The re-
sults of the application of the right and left polynomial
splines for the approximation of the first derivative of
functions are given in Table 7.

Table 4: The errors of approximation with the right
trigonometrical splines

f(x) Actual err. Theor.err.
sin(3x) 0.153e-2 0.191e-2
1/(1 + 25x2) 0.294e-1 0.461e-1
x3 0.573e-3 0.715e-3
sin(x)− cos(x) + x 0.642e-4 0.795e-4

Table 5: The errors of approximation with the right
polynomial splines

f(x) Actual.err. Theor.err.
sin(3x) 0.1721e-2 0.1732e-2
1/(1 + 25x2) 0.2957e-1 0.3754e-1
x3 0.3849e-3 0.3850e-3
sin(x)− cos(x) + x 0.9061e-4 0.9074e-4

Calculations for both tables were made in Maple
with Digits=15, [a, b] = [−1, 1], h = 0.1.

Table 6: The actual errors of approximation of the first
derivative of functioms with the right and left trigono-
metric splines

f(x) Trig.left Trig.right
sin(3x) 0.754e-1 0.777e-1
1/(1 + 25x2) 1.413 1.452
x3 0.278e-1 0.287e-1
sin(x)− cos(x) + x 0.324e-2 0.334e-2

Table 7: The actual errors of approximation of the first
derivative of functions with the right and left polyno-
mial splines

f(x) Pol.left Pol.right
sin(3x) 0.840e-1 0.873e-1
1/(1 + 25x2) 1.42 1.46
x3 0.194e-1 0.020e-1
sin(x)− cos(x) + x 0.456e-2 0.469e-2

The theoretical results of the application of the
right and left trigonometric splines for the approxi-
mation of the first derivative of functions are given
in Table 8. The theoretical results of the application
the right and left polynomial splines for the approxi-
mation of the first derivative of functions are given in
Table 9.

Calculations for both tables were made in Maple
with Digits=15, [a, b] = [−1, 1], h = 0.1.

The last four tables show that the constants in the
inequalities of the approximation of the derivatives of
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Table 8: The theoretical errors of approximation of
the first derivative of functions with the right and left
trigonometric splines

f(x) Trig.left Trig.right
sin(3x) 0.127 0.296
1/(1 + 25x2) 2.75 6.40
x3 0.029 0.066
sin(x)− cos(x) + x 0.00667 0.0155

Table 9: The theoretical errors of approximation of
the first derivative of functions with the right and left
polynomial splines

f(x) Pol.left Pol.right
sin(3x) 0.135 0.270
1/(1 + 25x2) 2.918 5.836
x3 0.030 0.06
sin(x)− cos(x) + x 0.707e-2 0.141e-1

the function are somewhat overestimated and can be
slightly reduced.

5 Interval extention
As is known, the task of interval estimation is to find
the narrowest estimation interval as possible.

For interval estimation of approximation with
splines, we will use operations on intervals set forth,
for example, in book [10]. Interval result over real in-
tervals A = [a1, a2] and B = [b1, b2] can be obtained
using the formulas:

1. A+B = [a1 + b1, a2 + b2],
2. A−B = [a1−b2, a2−b1] = A+[−1,−1] ·B,
3. A ·B = [min{a1b1, a1b2, a2b1, a2b2},

max{a1b1, a1b2, a2b1, a2b2}],
4. A : B = [a1, a2] · [1/b2, 1/b1], 0 /∈ B.

For a unary operation we use the rule
5. r(A) = [min

x∈A
(r(x)),max

x∈A
(r(x))],

where r(A) is the unary operation.
Theorem 1 helps us to choose the correct length

h = xj+1 − xj of the interval [xj , xj+1].
Suppose we know the values of function f(x)

at nodes {xk}. Using formulas (1), (3), (5), (6),
(8), (9), (11), (12) with trigonometrical splines and
the technique of interval analysis [10] we can con-
struct the upper and lower boundaries for every inter-
val Yj = [xj , xj+1]. Thus we avoid the calculations
of approximation f(x) in many points of every inter-
val [xj , xj+1] if we need to know the boundaries of
the interval, where the function f varieties. In order
to obtain the boundaries of variety f(x) we construct

the approximation F (x), x ∈ Yj in form (1) and con-
sider F (Yj).

In order to get the narrowest estimation interval
we transform formulas (5). First, we consider the es-
timate of the lower bound of the estimating interval of
the basis spline wj−1(x).

Let Xmax
j−1 be the maximum

Xmax
j−1 = max

x∈[xj ,xj+1]
(cos(xj/2− x+ xj+1/2).

Then the upper boundary of wj−1 will be the fol-
lowing

wMA
j−1 = 2 sin(xj/2− xj+1/2)/(sin(xj − xj−1)−

sin(xj+1−xj−1)−sin(−xj+1+xj)) ·Xmax
j−1 +wA

j−1,

where

wA
j−1 = sin(xj+1 − xj)/(sin(xj − xj−1)−

sin(xj+1 − xj−1)− sin(−xj+1 + xj)).

After calculating the upper boundaries of wj−1,
wj and wj+1 we can calculate the upper boundary of
F (x). Now the upper boundary of F (x) will be the
following:

FMAX = f(xj−1)w
MA
j−1+f(xj)w

MA
j +f(xj+1)w

MA
j+1 .

A program was developed in the MAPLE envi-
ronment to visualize the interval estimation of the
variation of a function and its first derivative. To ob-
tain an interval estimate of the function or its first
derivative, values of the function in grid nodes are re-
quired. The program uses trigonometric basis splines.
Directional machine rounding is not used in this ver-
sion of the program.

The results of the interval extension of function
f(x) are given in Figures 10-12, 14, 16, 18.The results
of the interval extension of the first derivative of the
function f(x) are given in Figures 13, 15, 17. Here
[a, b] = [0, π], h = π/15. The plots of function f(x)
and its upper and lower boundaries are given in Fig. 10
when f(x) = sin(x) and in Fig. 11 when f(x) =
cos(x).

The plots of function 1/(1 + 25x2) and its upper
and lower boundaries are given in Fig. 12. The plots of
the first derivative of this function its upper and lower
boundaries are given in Fig. 13.

The plots of function sin(3x) and its upper and
lower boundaries are given in Fig. 14. The plots of
the first derivative of this function its upper and lower
boundaries are given in Fig. 15.
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Figure 10: The plots of function f(x) = sin(x) and
its upper and lower boundaries.
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Figure 11: The plots of function f(x) = cos(x) and
its upper and lower boundaries.
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Figure 12: The plots of function 1/(1 + 25x2) and its
upper and lower boundaries.
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Figure 13: The plots of the first derivative of the func-
tion 1/(1 + 25x2) and its upper and lower boundaries
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Figure 14: The plots of function sin(3x) and its upper
and lower boundaries.
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Figure 15: The plots of the first derivative of the func-
tion sin(3x) and its upper and lower boundaries.
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Figure 16: The plots of function sin(x)− cos(x) + x
and upper and lower boundaries.
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Figure 17: The plot of the first derivative of the func-
tion 1/(1+(cos(x))2) and its upper and lower bound-
aries.
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Figure 18: The plots of the function 1/(1+(cos(x))2)
and its upper and lower boundary.

6 Conclusion
In this paper we calculate the constants that cannot be
reduced in the theorem of approximation with trigono-
metrical splines and present the results of working the
program of constructing interval extension. The re-
sults of the numerical experiments show that trigono-
metrical approximation is preferred to polynomial ap-
proximation when we approximate a trigonometrical
function. To avoid calculation in many points we can
use interval extension if we need to know only the up-
per and the lower boundaries of variation of the func-
tion. But we have to hold in mind the theorem of ap-
proximation.
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